Molinaroli College of Engineering and Computing
Faculty and Staff
Frederick L. Dryer
Title: | Educational Foundation Distinguished Research Professor, Mechanical Engineering |
Department: | Mechanical Engineering Molinaroli College of Engineering and Computing |
Email: | [email protected] |
Phone: | 803-777-9136 |
Fax: | 803-777-0106 |
Office: |
300 Main Street, Rm A-122 |
Resources: | Curriculum Vitae [pdf] Research Gate Google Scholar |
Background
Dr. Dryer has over 45 years of applications-driven fundamental research experience in thermal sciences (heat transfer, fluid dynamics, physical chemistry, and chemical kinetics) relevant to space and air-breathing propulsion, fossil and renewable energy conversion related to ground transportation and stationary power generation, combustion-related pollutant mitigation, and fire safety. Dr. Dryer’s current research interests include: chemistry/chemical kinetics of fuels and hazardous waste materials as related to ignition, combustion, and emissions generation/abatement; petroleum-derived fuels, including gasoline, diesel, gas turbine, and heavy fuel oil combustion properties; non-petroleum-derived alternative fuels, their production, their chemical kinetic properties, and their ability to address U.S. energy security and reduction in net carbon cycle emissions as well as other pollutant concerns; fire safety related issues on earth and in micro gravity environments; solid phase/gas phase interactions as related to particle burning phenomena and nano-catalyst materials; emissions from internal combustion engines, including hydrocarbons, nitrogen oxides, aerosol particulates; emissions interactions including chlorine, sulfur and ash (metals) component effects in stationary energy conversion, chemical processing, and incineration.
Education
- Ph.D. Aerospace and Mechanical Sciences - Princeton University, 1972
- Bachelor of Aeronautical Engineering - Rensselaer Polytechnic Institute, 1966
Selected Publications
- S. Dooley, S.H. Won, and F.L. Dryer, “Surrogate Fuels and Combustion Characteristics of Liquid Transportation Fuels”,
Chapter 10 in Computer-Aided Chemical Engineering Mathematical Modelling of Gas-Phase
Complex Reaction Systems: Pyrolysis and Combustion 45, (T. Faravelli, F. Manenti,
E. Ranzi, eds.) Elsevier B.V. pp. 513 – 592.
- S.H. Won, N. Rock, S.J. Lim, S. Nates, D. Carpenter, B. Emerson, T. Lieuwen, T. Edwards,
and F.L. Dryer, “Preferential Vaporization Impacts on Lean Blow-Out of Liquid Fueled Combustors”, Combust.
Flame 205 295-3-4 (2019). https://doi.org/10.1016/j.combustflame.2019.04.008
- T.I. Farouk, D. Dietrich, and F.L Dryer, “Three Stage Cool Flame Droplet Burning Behavior of n-Alkane Droplets at Elevated
Pressure Conditions: Hot, Warm and Cool Flame”, Proc. Combust. Ins. 37 3353-3361 (2019). https://doi.org/10.1016/j.proci.2018.09.015
- M.F. Alam, A.C. Aghdt, F.L Dryer and T.I. Farouk, “Oscillatory Cool Flame Combustion Behavior of Submillimeter Sized
n-Alkane Droplet under Near Limit Conditions”, Proc. Combust. Ins. 37 3383-3391 (2019). https://doi.org/10.1016/j.proci.2018.05.151
- F.M. Haas, S.H. Won, F.L. Dryer, and C. Pera, “Lube Oil Chemistry Influences on Autoignition as Measured in an Ignition
Quality Tester”, Proc. Combust. Ins. 37 4645-4654 (2019). https://doi.org/10.1016/j.proci.2018.06.165
- K. Dussan, S.H. Won, A. Ure, F.L Dryer, and S. Dooley, “Chemical Functional Group Descriptor for Ignition Propensity of
Large Hydrocarbon Liquid Fuels”, Proc Combust Ins 37, 5083-5093 (2019). https://doi.org/10.1016/j.proci.2018.05.151
- F.E. Alam, S.H. Won, F.L. Dryer, and T.I. Farouk, “Ozone-Assisted Cool Flame Combustion of Sub-millimeter Sized n-alkane
Droplets at Atmospheric and Higher Pressure”, Combust. Flame 195 220-231 (2018). https://doi.org/10.1016/j.combustflame.2018.01.015
- S.H. Won, F.M. Haas, S. Dooley, F.L. Dryer, and T. Edwards, “Reconstruction of Chemical Structure of Real Fuel by Surrogate
Formulation Based Upon Combustion Property Targets”, Combust. Flame 183 39-49 (2017). https://doi.org/10.1016/j.combustflame.2017.04.032
- T.M. Foong, M.J. Brear, K.J. Morganti, G. da Silva, Y. Yang, and F.L. Dryer, “Modeling End-Gas Autoignition of Ethanol/Gasoline Surrogate Blends in the Cooperative
Fuel Research Engine”, Energy Fuels 31 2378-2389 (2017). http://dx.doi.org/10.1021/acs.energyfuels.6b02380
- F.E. Alam, F.M. Francis, T.I. Farouk, and F.L. Dryer, “Influence of Trace Nitrogen Oxides on Natural Gas Oxidation: Flow Reactor Measurements
and Kinetic Modeling”, Energy Fuels 31, 2360-2369 (2017). http://dx.doi.org/10.1021/acs.energyfuels.6b02369
- T.I. Farouk, Y. Xu, C.T. Avedisian, and F.L. Dryer, “Combustion Characteristics of Primary Reference Fuels (PRF) Droplets: Single Stage
High Temperature Combustion to Multistage “Cool” Flame Behavior”, Proc. Combust Ins 36 2585-2594
(2017). http://dx.doi.org/10.1016/j.proci.2016.07.066
- T.I. Farouk, F.L. Dryer, D. Dietrich, and F. E. Alam, “Isolated n-Decane Droplet Combustion – Dual Stage
and Single Stage Transition to “Cool Flame” Droplet Burning” Proc. Combust. Ins. 36 2523-2530
(2017). http://dx.doi.org/10.1016/j.proci.2016.07.015
- F.L. Dryer, “Chemical Kinetic and Combustion Characteristics of Transportation Fuels”, Proc.
Combust. Ins. 35 117-144 (2015). (Plenary)
- S.F. Ahmed, J. Santner, F.L. Dryer, B. Padak, and T.I. Farouk, “Computational Study of NOx Formation at Conditions Relevant
to Gas Turbine Operation, Part 2: NOx in High Hydrogen Content Fuel Combustion at
Elevated Pressure”, Energy Fuels 30 7691–7703 (2016). http://dx.doi.org/10.1021/acs.energyfuels.6b00421
- J. Santner, S.K. Ahmed, T. Farouk and F.L. Dryer, “Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation:
Part 1, Energy Fuels, 30 6745–6755 (2016). http://dx.doi.org/10.1021/acs.energyfuels.6b00420
- C-W. Zhou, Y. Li, E. O'Connor, K.P. Somers, S. Thion, C. Keesee, O. Mathieu, E.L.
Petersen, T.A. DeVerter, M.A. Oehlschlaeger, G. Kukkadapu, C-J. Sung, M. Alrefae,
F. Khaled, A. Farooq, P. Dirrenberger, P-A. Glaude, F. Battin-Leclerc, J. Santner,
Y, Ju, T. Held, F.M. Haas, F.L. Dryer, and H.C. Curran, “A Comprehensive Experimental and Modeling Study of Isobutene Oxidation, Combust.
Flame 167 353-379 (2016). http://dx.doi.org/10.1016/j.combustflame.2016.01.021
- F.M. Haas and F.L. Dryer, “Rate Coefficient Determinations for H + NO2 → OH + NO from High Pressure Flow Reactor
Measurements”, J. Phys. Chem. A 119 7792–7801 (2015). Special Issue. http://dx.doi.org/10.1080/00102202.2015.1085033
- A. Sudholt, C. Liming, C., J. Heyne, F.M. Haas, F.L. Dryer, and H. Pitsch, “Ignition Characteristics of a Bio-Derived Class of Saturated and
Unsaturated Furans for Engine Applications”, Proc. Combust. Ins. 35 2957-2965 (2015). http://dx.doi.org/10.1016/j.proci.2014.06.147
- K.J. Morganti, T.M. Foong, M.J. Brear, G. da Silva, Y. Yang, and F.L. Dryer, “The Autoignition of Liquefied Petroleum Gas (LPG) in Spark-Ignition Engines”, Proc.
Combust. Ins. 35 2933–2940 (2015). http://dx.doi.org/10.1016/j.proci.2014.06.070
- T.M. Foong, K.J. Morganti, M.J. Brear, G. da Silva, Y. Yang, F.L. Dryer, “The Octane Numbers of Ethanol Blended with Gasoline and its Surrogates”, Fuel 115 727-739
(2014). http://dx.doi.org/10.1016/j.fuel.2013.07.105
- F.M. Haas and F.L. Dryer, “Application of Blending Rules for Ignition Quality Metrics: A comment on ‘‘A linear-by mole Blending Rule for Octane Numbers of n-heptane/iso-octane/toluene Mixtures’’, Fuel 120 240–242 (2014). http://dx.doi.org/10.1016/j.fuel.2013.10.025